AP® Physics-2 The Mississippi School for Mathematics & Science **INSTRUCTOR:** Jed Leggett, Office: Hooper Science 202 Email: jleggett@themsms.org Phone: 662-329-7360, Office hours: M.W.F: 8:00-9:00am, 2:00-3:00 pm; T: 1:00-2:30pm; Th: 8:00-9:30 am **TEXTBOOKS:** Serway & Vuille, *College Physics 9ed*, Brooks/Cole, 2011. Enrichment Texts: OpenStax College, College Physics. OpenStax College. 21 June 2012. Hewitt, Conceptual Physics 9ed, Pearson, 2001. **DESCRIPTION:** AP® Physics-2 is an algebra and trigonometry based course which provides a college-level introduction to the topics of a university's second semester physics course. Successful completion of this course will provide the student with a solid foundation in the topics of fluid statics and dynamics, thermodynamics, kinetic theory, PV diagrams and probability, electrostatics, RC circuits, magnetic fields, electromagnetism, physical optics, geometrical optics, introductory atomic and quantum theory, relativity and nuclear physics. Critical thinking and reasoning skills are developed through inquiry-based laboratory experiences. The lab-based course is designed to prepare students to take the AP® Physics-1 examination, which is administered each May. In order to foster critical thinking skills necessary to pursue a career in science or engineering, the course includes two separate hands-on components (Labs and Extended Design Projects) which utilize guided inquiry and student-centered, team-based design of experiments, presentation of design results and scientific argumentation. The class will meet for lecture on Monday, Wednesday & Fridays for one hour each day, and the lab will meet on Tuesdays or Thursdays for 1.5 hours each week. (Lab time constitutes 33% of the total inclass contact hours for the course.) PREREQUISITE: AP® Physics-1 **GRADING SCALE:** A: 90 – 100 B: 80 – 89 C: 70 – 79 NC: 0 – 69 ## **CHRONOLOGY:** Weeks 1-4: Fluid statics and dynamics Weeks 5-7: Thermodynamics Weeks 7-8: Kinetic theory Weeks 9-10: PV diagrams and probability Weeks 11-12: Electrostatics Weeks 13: RC circuits Weeks 14-16: Magnetic fields Weeks 17-18: Electromagnetism Weeks 19-20: Light and Special Relativity Weeks 21-24: Light and physical optics Weeks 25: Geometrical optics Weeks 26-28: Introductory atomic theory Weeks 29-31: Quantum theory Weeks 32-34: Nuclear physics & nuclear energy Weeks 35: Content Exam Review Weeks 36: Short intro to General Relativity & programming GPS clocks ## **ASSESSMENT** **Homework / Class-Work**: Homework will consist of reading, taking notes, answering conceptual questions and working problems. "Problem Sets" will be assigned from each chapter. Both the teacher and students will model many of these problems in class. In addition to lecture, class-work also will include "whiteboard problem solving" where each table is given its own 3'x4' whiteboard and one marker. When needed the teacher can offer suggestions, but the student teams must communicate effectively as a team and bring all their problem solving skills to bear upon the problem at hand. When completed, the team will present their solution before the classroom. The homework & class-work average will count 20% of the nine-weeks grade. **Quizzes**: In order to reinforce the reading assignments, one out-of-class, computer-based "Conceptual Quiz" per unit will be averaged into the homework grade. The student may work the "Conceptual Quiz" as many times as he or she likes in order to score a higher score. **Labs**: In order to foster critical thinking skills necessary to pursue a career in science or engineering, students will complete a hands-on lab component which utilizes guided inquiry and student-centered, team-based design of experiments. Lab grades will consist primarily of an inquiry-based design of experiment, followed by a collection of data and writing up the methods, results and conclusions in a professionally acceptable format. By the semester's end, the student will have generated a portfolio of experimental designs and lab write-ups. The lab average will count 20% of the nine-weeks grade. At least twenty or more of the following investigations (labs) will be performed during the year: - 1. Water discharge rates in a flume - 2. Archimedes' Principle - 3. Torricelli's Theorem - 4. Heating efficiency - 5. Combined gas laws - 6. Latent & specific heat - 7. Friction energy transfer apparatus - 8. Operation of a heat engine - 9. Thermal conductivity - 10. Electrostatics - 11. Ohm's Law and Ohmic materials - 12. Voltage and equipotentials - 13. Circuits - 14. Determination of Plank' constant with LED's - 15. Spherical mirrors and optical instruments - 16. Spherical lenses and optical instruments - 17. Diffraction and Snell's Law - 18. Diffraction and resolution limits for optical instruments - 19. Polarization of Light - 20. Malus' Law for polarizing film - 21. Nuclear Safety - 22. Decay of Pb-210 and the Wilson Chamber - 23. Nuclear decay and the Geiger-Mueller tube - 24. Experimental Procedure & Identification of Systematic Variances **Projects**: In order to foster critical thinking skills necessary to pursue a career in science or engineering, students will complete team-based engineering design units which utilize guided inquiry and student-centered, team-based engineering design projects. These extended engineering design projects will require the student teams to bring all their physics knowledge to bear upon a problem of engineering design and also may incorporate the use of numerical methods, statistical methods and computer programming in order to complete the team-based designs. Two extended "Engineering Design" projects will be assigned during the school year leading to team-based PowerPoint presentations of engineering designs and classroom-collaborative scientific argumentation and critique of engineering designs. The Projects will be averaged into the lab average. At least two of the following design projects will be performed during the year: - 1. Computer visualization of electric fields and equipotential surfaces using Maple/Mathematica - 2. Dobsonian optical telescope design and testing - 3. Pump testing and slug testing in hydrogeology - 4. Programming of on-board satellite GPS clocks: special & general relativity **Unit Tests**: There will be 2-4 tests each nine-weeks. These tests will cover the material assigned for study on the particular topics. The average of these tests will count 60% of the nine-weeks grade. Missed unit tests will be made up no later than 5 days after the test is given. | Semester Exam : The semester exam shall count the semester grade. | t 20% of the semester ş | grade. Each nine-weeks grad | le shall count 40% of | |--|-------------------------|-----------------------------|-----------------------| **Academic Dishonesty** The Physics Department defines academic dishonesty to be any action in which a student claims any work done by another person or machine as his or her own work. Some examples of academic dishonesty are as follows: - Copying another person's homework, lab report, etc. - Putting a student's name on a project in which that student has not done an equal part - Reporting on an assignment that has not been read, such as a book report, extra-credit reading etc. - Using unauthorized notes or another person's work on tests - Discussing material on test with others who have not yet taken the test - Plagiarism **Honor Code** In this course, anything the student turns in for a grade must be "pledged" according to the following honor code: ## "I promise that I have neither given nor received any unauthorized help on this assignment." Simply writing "I promise" near your name will serve as shorthand for the full pledge. To clear up any confusion, note that any help at all on a test is unauthorized. On homework and labs, students are urged to give and receive help from others and to work in small groups in order to learn, as long as copying is not the result. Help each other and compare answers on homework and other assignments done outside of class. Discuss those answers on which you disagree, changing your answer if you choose. The goal is for you to become an independent learner, capable of group interaction. However, after receiving help on a problem outside of class from another student, keep in mind that if you have the answer but do not understand how to get it yourself, then you have been helped to cheat and not to learn.